GANC: Greedy Agglomerative Normalized Cut
نویسندگان
چکیده
This paper describes a graph clustering algorithm that aims to minimize the normalized cut criterion and has a model order selection procedure. The performance of the proposed algorithm is comparable to spectral approaches in terms of minimizing normalized cut. However, unlike spectral approaches, the proposed algorithm scales to graphs with millions of nodes and edges. The algorithm consists of three components that are processed sequentially: a greedy agglomerative hierarchical clustering procedure, model order selection, and a local refinement. For a graph of n nodes and O(n) edges, the computational complexity of the algorithm is O(n log n), a major improvement over the O(n) complexity of spectral methods. Experiments are performed on real and synthetic networks to demonstrate the scalability of the proposed approach, the effectiveness of the model order selection procedure, and the performance of the proposed algorithm in terms of minimizing the normalized cut metric.
منابع مشابه
GANC: Greedy agglomerative normalized cut for graph clustering
This paper describes a graph clustering algorithm that aims to minimize the normalized cut criterion and has a model order selection procedure. The performance of the proposed algorithm is comparable to spectral approaches in terms of minimizing normalized cut. However unlike spectral approaches, the proposed algorithm scales to graphs with millions of nodes and edges. The algorithm consists of...
متن کامل2 Review of Agglomerative Hierarchical Clustering Algorithms
Hierarchical methods are well known clustering technique that can be potentially very useful for various data mining tasks. A hierarchical clustering scheme produces a sequence of clusterings in which each clustering is nested into the next clustering in the sequence. Since hierarchical clustering is a greedy search algorithm based on a local search, the merging decision made early in the agglo...
متن کاملMultilevel Refinement for Hierarchical Clustering
Hierarchical methods are well known clustering technique that can be potentially very useful for various data mining tasks. A hierarchical clustering scheme produces a sequence of clusterings in which each clustering is nested into the next clustering in the sequence. Since hierarchical clustering is a greedy search algorithm based on a local search, the merging decision made early in the agglo...
متن کاملTight Continuous Relaxation of the Balanced k-Cut Problem
Spectral Clustering as a relaxation of the normalized/ratio cut has become one of the standard graph-based clustering methods. Existing methods for the computation of multiple clusters, corresponding to a balanced k-cut of the graph, are either based on greedy techniques or heuristics which have weak connection to the original motivation of minimizing the normalized cut. In this paper we propos...
متن کاملCombinations of the Greedy Heuristic Method for Clustering Problems and Local Search Algorithms
In this paper, we investigate application of various options of algorithms with greedy agglomerative heuristic procedure for object clustering problems in continuous space in combination with various local search methods. We propose new modifications of the greedy agglomerative heuristic algorithms with local search in SWAP neighborhood for the p-medoid problems and j-means procedure for contin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1105.0974 شماره
صفحات -
تاریخ انتشار 2011